工業技術研究院

Industrial Technology Research Institute

Al-Driven Visual Intelligence Applications

- Person Analytics
- Markerless 3D Motion Capture

Information and Communications Research Laboratories (ICL)

Yi-Yu Su 2025/09

©工業技術研究院 權利所有。

Person Analytics

- § Flow Analysis
- § Cross Camera Person Re-ID

Rapid Market for Al Surveillance Applications

§ Global surveillance camera market to reach \$43.56B in 2025, growing to \$62.57B by 2029 (CAGR 9.5%).

§ Asia-Pacific leads market growth, projected at \$20.81B in 2025 and \$33.67B by 2030 (CAGR 10.10%).

Source: The Business Research Company (2025)

Asia-Pacific surveillance camera market

Source: Mordor Intelligence (2024)

Valuable Data x Actionable Insight

Commercial Space Application Scenarios

People Analytics - Tracking & Positioning

and spatial localization within a common commercial setting.

©工業技術研究院 權利所有。

People Analytics - Re-ID in Commercial Space

91% high accuracy rate of re-identification.

Intelligent Video Analysis System Architecture

Various Sources Support

- IPCAM/WebCAM
- · RTSP live stream / video files
- H.264 / H.265 video codec

Flexible System & Al Models

- Flexible system architectures: Cloud/On-premise/Hybrid
- Al Modules: Person Detection/ Tracking and Localization, Gender/ Age Recognition, Cross-Camera Person Re-identification, etc.

Seamlessly Integrable

- Cloud/Edge/Hybrid integration
- · Comprehensive API (e.g., Restful)
- Enterprise Account Integration (e.g., LDAP)
- Web-based Data Management and System Maintenance Interface

Production Deployment in Commercial Field

Markerless 3D Motion Capture

工業技術研究院 Industrial Technology Research Institute

©工業技術研究院 權利所有· 10

§ Traditional Motion Capture (MoCap): Optical & Inertial

- Requiring suits/markers, and complex setup / operate.
- · Mainly for professional filming / sports science / gaming...

MoCap applied to virtual character

§ Marker-less Motion Capture

- · Utilizing general cameras with image analysis to obtain 2D/3D human pose
- · No suits/markers are needed, flexible with setup and portability.
- Challenges:
 - Depth ambiguity
 - Complex poses and occlusions
 - Motion stability and smoothness
 - Multi-person tracking

Single-Camera Operation (2D to 3D HPE)

Video Test - Fitness and Exercise (source - YouTube)

Video Test - Mobility Assessment (source - YouTube)
工業技術研究院

Markerless 3D Motion Capture

2D Motion Capture

3D Pose Estimation

3D Data Fusion

3D Data Output

- Multi-camera synchronization and calibration system: rapid, accurate, and flexible.
- 2D keypoints filtering: corrects occlusions, intersections, or false detections.

Multi-camera 3D calibration and positioning

- Spatiotemporal 3D reconstruction algorithm: combining spatial features intersection and temporal analysis.
- Optimization of joint angles to ensure realistic poses.

3D pose data fusion

3D pose data smoothing

- 3D pose keypoints data processing mechanism, integrating kinematics to reconstructs 3D pose and motion information.
- Motion smoothing mechanism to reproduce natural movement.

Standard 3D data format

 Conversion to a standard 3D skeletal data format, compatible with most 3D animation software for applying virtual and augmented reality applications.

工業技術研究院 Industrial Technology Research Institute

19

A Lighter Front-Facing 2 Cameras Setup

©工業技術研究院 權利所有。

Technical Features and Application Scenarios

Analysis	Single-Camera	Multi-Camera
Method	Single-cam image \rightarrow 2D human skeleton \rightarrow 3D estimation model \rightarrow 3D skeleton data.	$\begin{array}{l} \text{Multi-cam images} \rightarrow \text{Multiple 2D skeleton} \\ \rightarrow \text{3D fusion/reconstruction} \rightarrow \text{3D skeleton data}. \end{array}$
Pros	Requires less setup time.Easy to operate and lower overall cost.	 High 3D skeleton precision & movement stability. Excellent for multi-person analysis.
Cons	 Lower precision and may not perform well with specific movements. Best suited for single-person applications. 	 Requires more setup time, more complex system installation and operation Demands more space, and higher overall cost.
Features	 Suitable for applications with general precision requirements and lower budgets. Fitness tracking or activity/energy measurement, etc. 	 Suitable for applications that require high precision and movement fidelity. Sports science, professional performances, etc.
Equipment	1 camera (webcam) + a main computer.	4 cameras (webcams) + a main computer with a GPU card.

©工業技術研究院 權利所有・